ELEMENTARY LINEAR ALGEBRA - SET 6

Linear mappings and matrices

1. Define the mapping $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by $T(x, y)=(x+y, x)$. Show that T is linear and find the matrix $M(T)$ of the mapping T with respect to the standard basis $B=\left\{e_{1}, e_{2}\right\}$ in \mathbb{R}^{2}, where $e_{1}=(1,0)$ and $e_{2}=(0,1)$.
2. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear mapping given by $T(x, y)=(x+y, 3 x-y)$. Find its matrix in the standard basis $B=\left\{e_{1}, e_{2}\right\}$ and in the basis $B^{\prime}=\left\{v_{1}, v_{2}\right\}$ given by $v_{1}=(1,1), v_{2}=(1,-1)$.
3. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear mapping given by $T(x, y, z)=(x+y, y-z, x+y+z)$. Find its matrix in the standard basis $B=\left\{e_{1}, e_{2}, e_{3}\right\}$.
4. Define the mapping $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by $T(x, y)=(x+y, x+1)$. Show that T is not linear.
5. Define the mapping $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by $T(x, y)=(x y, x)$. Show that T is not linear.
6. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear mapping defined by the action onto basis vectors:

$$
T e_{1}=e_{1}+2 e_{2} \quad \text { and } \quad T e_{2}=-e_{1}+e_{2},
$$

where $B=\left\{e_{1}, e_{2}\right\}$ is the standard basis in \mathbb{R}^{2}. Find a formula for $T(x, y)$ for any $x, y \in \mathbb{R}$.
7. For T in Problem 6 find its matrix $M(T)$ in the standard basis $B=\left\{e_{1}, e_{2}\right\}$. Representing vectors $v=(x, y)$ in terms of one-column matrices

$$
M(v)=\binom{x}{y}
$$

verify that we have $M(T) M(v)=M(T v)$, which gives a matrix representation of the action of T.
8. For T in Problem 6 find its matrix $M^{\prime}(T)$ in the basis $B^{\prime}=\left\{v_{1}, v_{2}\right\}$, where $v_{1}=(1,0)$ and $v_{2}=(1,1)$.
9. Let $T_{\alpha}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the mapping given by $T_{\alpha}(x, y)=\left(x^{\prime}, y^{\prime}\right)$, where

$$
\begin{aligned}
x^{\prime} & =x \cos \alpha-y \sin \alpha \\
y^{\prime} & =x \sin \alpha+y \cos \alpha
\end{aligned}
$$

where α is an arbitrary real number. This mapping represents counterclockwise rotation of the plane by α radians about the origin. Show that T_{α} is a linear mapping for any $\alpha \in \mathbb{R}$. Find the images of points $(1,0),(0,1),(-1,0),(0,-1)$ under $T_{\pi / 2}$. Find the matrix $M\left(T_{\alpha}\right)$ of T_{α} in the standard basis in \mathbb{R}^{2}.
10. Define the linear mappings that represent
(a) the reflection of the plane with respect to the y axis,
(b) the reflection of the plane with respect to the x axis,
(c) the reflection of the plane with respect to the origin.

For all these mappings find their matrices in the standard basis in \mathbb{R}^{2}.
11. Let A, B be matrices defined by

$$
A=\left(\begin{array}{rr}
3 & 0 \\
-1 & 2 \\
1 & 1
\end{array}\right), \quad B=\left(\begin{array}{rrr}
1 & 5 & 2 \\
-1 & 1 & 0 \\
-4 & 1 & 3
\end{array}\right), \quad C=\left(\begin{array}{ll}
1 & 1 \\
2 & 2 \\
0 & 1
\end{array}\right),
$$

Which of the matrices: $A+B, A+C, 2 A, A B, B A, A C, C A, A^{2}, B^{2}$ are defined? Compute these matrices which are defined.

Romuald Lenczewski

